			-	640	3.60				
1				648	M2	a complete method, eg 12.5 × 1000 ÷ 19.3		n/ 1 : : : : : : :	
					[M1	for using volume = mass/density, eg 12500 conversions) may be implied by digits 647.			
					١.,			•	
					A1	for answer in range 647 to 648			
2		No (www.stad)	P1	For a process to calculate the initial or new pressure,				Accept any value in the range 2.6 to 2.7	
-		(supported)		eg (70 +10) ÷ (20+10) (=2.6 to 2.7) or 80 ÷ 30 (=2.6 to 2.7) or 70 ÷ 20 (=3.5)				if unsupported by working	
			P1	For a complete process to make a comparison eg. 0.8 × "3.5" (=2.8) OR ("3.5"-"2.6") × 100 (=22 to 26)					
				OR $\frac{(-5.5)^{2}}{(-3.5)^{2}} \times 100 \text{ (=22 to 26)}$ OR "3.5" × 0.2 (=0.7) and 80 ÷ 30 (=2.6 to 2.7)					
				OR "2.6" (× 100) (=0.74 to 0.78 or 74 to 78)					
			A1					Allow toppostion 1:C.C	
			AI	for a correct conclusion supported by accurate figures eg 2.8 and 2.6(6)				Allow truncation or rounding of figures	
				OR decrea OR 0.7 an		(or 22% to 26%) 7 and 3.5			
				OR 0.7 an	d 0.9				
				OR 0.76 (OR 76% (
				1 -	-				
		0.43	B1	for one cor	rect hound	d for mass or length		Can work in any units	
3		0.15		eg 1967.5		or 13.15 or 15.95 or 21.65 or 13.25 or 16.05	or	Can work in any times	
				21.75					
			P1			to find a bound for the volume,		Accept volumes truncated or rounded to	
						1.65 (=454(0.925125)) 1.75 (=462(5.409375))		at least 3 sig fig	
			P1	for a corre	ct process	to find a bound for density,		Accept densities truncated or rounded to	
				eg [mass L	.B] ÷ "462	(5.409375)" (=0.425(367755))		at least 3 sig fig	
				or [mass U		(0.925125)" (=0.434(3828506))			
				where 197	0 < mass U	UB ≤ 1975			
			A1	for both co	rrect boun	nds, 0.425(367755) and 0.434(3828506)		Accept bounds truncated or rounded to	
								least 3 sig fig At this point correct units must be used	
			C1	(den on A1) for a cor	rrect statement on degree of accuracy		Must be 0.43 not 0.4	
				e.g. UB an		round to 0.43 to 2 decimal places or 2 significations	ant	With the 0.43 flot 0.4	
				figures					
			· · ·	· · · · · · · · · · · · · · · · · · ·					
4	(a)	16 to 20	P1	for using time	= distance	$\frac{1}{2}$, eg $\frac{1}{200}$ or $\frac{1}{213}$			
-				or for 1 hour	speed = 60 × 60	(= 3600) seconds			
			P1		1	1	Calo	culation could be done in stages.	
					20	$\frac{1}{00} \times 60 \times 60$ oe or $\frac{1}{213} \times 60 \times 60$ oe		-	
			A1	for answer in					
	(b)	decision with reason	C1	(dep on corre	ct use of ti	$me = \frac{distance}{speed}$) for reason related to their			
		1000011		response to pa		d rounded down			
			+	-0 0.0resume	as spect				
 5	(a)	130	P1	for process to	r process to divide eg $(3.9 \times 10^7) \div (3 \times 10^5)$			Condone missing brackets	
,			A1	cao			Acc	ept 1.3 × 10 ²	
	(b)	Explanation C1 Explanation referring to the time		the time					
		Pohiananon		Acceptable ex The time will b	amples				
				It will take long	ger				
				The answer will Not acceptable	e examples				
				The answer will The answer will					

6	1.01 P1 P1			for 1	$0.09 \times 60 \ (= 65.4 \text{ or } \frac{327}{5}) \text{ or } 0.97 \times 128 \ (= 124.16 \text{ or } \frac{3104}{25})$ $0.09 \times 60 \ (= 65.4 \text{ or } \frac{327}{5}) \text{ and } 0.97 \times 128 \ (= 124.16 \text{ or } \frac{3104}{25})$ $0.09 \times 60 \ (= 65.4 \text{ or } \frac{327}{5}) \text{ and } 0.97 \times 128 \ (= 124.16 \text{ or } \frac{3104}{25})$	Note that the volumes may be converted to ml, eg 1.09×60000 (= 65400)		
			P1 A1	for a	complete process to find the density of antifreeze 65.4° + "124.16") + 188 or 189.56 + 188 or $\frac{4739}{25}$ +188 answer in the range 1.00 to 1.01	Candidates working in ml must use 188,000 If an answer within the range is seen in working but then rounded incorrectly award full marks. Accept 1 for 1.00 Note that the correct value is 1.008		
	(i)	Distance in the rang	Te 20	P1	for a process to draw a bearing of 070°,	Accept a line of any length as long as the		
7	to 23		gc 20		eg. a line drawn 70° from the North line at P	intention is clear.		
	(ii) Bearing in the ran 317 to 330		nge	P1	for a process to work out the distance PQ , eg. 12 × 1.5 (= 18)			
				P1	(dep previous P1) for the process to use the given scale, eg. "18" ÷ 4 (= 4.5 cm)	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to 12 × 1.5 (= 18)		
				A1	(dep P3) for distance in the range 20 to 23	Award no marks if no supportive processes		
				A1	(dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes		
						Award A0A0 if Q is not in the correct place		
8	(a)	21.6		M1	for a method using distance = speed × time, eg. $72 \times \frac{18}{60}$ or 7.2 km in 6 minutes, so 7.2 × 3 oe partitioning method	Accept 72 × 18		
				A1	for 21.6 oe			
	(b)	No (supported)		M1	for a method to convert 20 m/s to km/h or 72 km/h to m/s, eg. $20 \times \frac{3600}{1000} (= 72)$ or $72 \times \frac{1000}{3600} (= 20)$	Accept methods to convert both speeds to km/s or m/h		
		C1		C1	for No since 72 km/h = 20 m/s oe			
			154			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
9		50	B1	for	finding the time difference, eg, 1hr 18 mins or 78 mins oe	Allow 1.18 for this mark 118 scores B0		
			P1	eg or	correct process to convert minutes to hours, 18 + 60 (=0.3) or 78 + 60 (=1.3) for a correct process to convert speed in miles per minute to mph "0.833." × 60	For a conversion of time or speed		
			P1		using speed = distance ÷ time eg, 65 ÷ [time] 65 ÷ 78 (=0.833)	[time] is what the candidate clearly indicates as time difference		
			P1		65 ÷ 78 (=0.833)			
				cac	65 ÷ 78 (=0.833)			
				cac	65 ÷ 78 (=0.833)			
10		739		or cac SC	65 ÷ 78 (=0.833)			
10		739	A1	pro or 2	$65 \div 78 \ (=0.833)$ B2 for 83(.333) seen as the answer Seess to find the volume of C, eg $\pi \times 3^2 \times 25 \ (= 706.8583471$	For use of 3.14		
10		739	A1	proof:	$65 \div 78$ (=0.833) B2 for 83(.333) seen as the answer $\frac{1}{225\pi}$ Excess to find the volume of C, eg $\pi \times 3^2 \times 25$ (= 706.8583471 occss to find the volume of A or the volume of B, $\frac{2}{100}$ (= 94.24777961 or 30π) $\frac{1}{100}$ 1	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2		
10		739	P1 P1	proof for eg	$65 \div 78$ (=0.833) B2 for 83(.333) seen as the answer B2 for 83(.333) seen as the answer B3 for 83(.333) seen as the answer B4 for 83(.333) seen as the answer B5 for 83(.333) seen as the answer B6 for 83(.333) seen as the answer B7 for 8 $\times \frac{2}{2+13}$ (= 94.24777961 or 30π) B7 for 8 $\times \frac{2}{2+13}$ (= 612.6105675 or 195π)	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2 Volume of B is 612.3 Mass of A is 113.982		
10			P1 P1 P1 A1	pro or 2 pro eg or or eg pro eg for eg	B2 for 83(.333) seen as the answer becess to find the volume of C, eg $\pi \times 3^2 \times 25$ (= 706.8583471 225 π) becess to find the volume of A or the volume of B, "706.8" $\times \frac{2}{2+13}$ (= 94.24777961 or 30 π) "706.8" $\times \frac{13}{2+13}$ (= 612.6105675 or 195 π) process to work with density and ratio, (2 × 1.21 + 13 × 1.02) (= 15.68) becess to find the mass of C, eg "30 π " × 1.21 (= 114.0398133) + 15 π " × 1.02 (= 624.8627788) "225 π " × "15.68" + (2+13) an answer in the range 738.5 to 739	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2 Volume of B is 612.3 Mass of A is 113.982 Mass of B is 624.546 Do not award accuracy mark if the figure is from obvious incorrect working		
10		739	P1 P1 A1	pro or 2 pro eg or or eg pro eg for eg	B2 for 83(.333) seen as the answer because to find the volume of C, eg $\pi \times 3^2 \times 25$ (= 706.8583471 225 π) because to find the volume of A or the volume of B, "706.8" $\times \frac{2}{2+13}$ (= 94.24777961 or 30 π) because to find the volume of A or the volume of B, "706.8" $\times \frac{2}{2+13}$ (= 612.6105675 or 195 π) because to work with density and ratio, (2 × 1.21 + 13 × 1.02) (= 15.68) concess to find the mass of C, eg "30 π " × 1.21 (= 114.0398133) + 105 π " × 1.02 (= 624.8627788) "225 π " × "15.68" + (2+13)	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2 Volume of B is 612.3 Mass of A is 113.982 Mass of B is 624.546 Do not award accuracy mark if the figure is from		
			P1 P1 P1 A1	pro or ' pro eg or ' or eg for 1	B2 for 83(.333) seen as the answer becess to find the volume of C, eg $\pi \times 3^2 \times 25$ (= 706.8583471 225 π) becess to find the volume of A or the volume of B, "706.8" $\times \frac{2}{2+13}$ (= 94.24777961 or 30 π) "706.8" $\times \frac{13}{2+13}$ (= 612.6105675 or 195 π) process to work with density and ratio, (2 × 1.21 + 13 × 1.02) (= 15.68) becess to find the mass of C, eg "30 π " × 1.21 (= 114.0398133) + 15 π " × 1.02 (= 624.8627788) "225 π " × "15.68" + (2+13) an answer in the range 738.5 to 739	For use of 3.14 Volume of C is 706.5 Volume of A is 94.2 Volume of B is 612.3 Mass of A is 113.982 Mass of B is 624.546 Do not award accuracy mark if the figure is from obvious incorrect working		

12	196	P1 P1	for vol A = 1400 + 70 (=20) or for mass B = 280 × 30 (=8400) for density C = $\frac{1400 + "8400"}{"20" + 30}$ (= $\frac{9800}{50}$) or answer with digits 196		
		A1	cao		An answer of 350 from 70 + 280 gets no marks
	•				
13	1.6	P1	for 1.8 × 80 (= 144) or 1.2 × 40 (= 48) or for 192 or for 80 : 40 = 2 : 1		
		P1	for ("144" + "48") ÷ (80 + 40) or 192 ÷ 120 or for (1.8 × 2 + 1.2) ÷ 3 or 4.8 ÷ 3		
		A1	oe		